Activity of vestibular nuclei neurons during vestibular and optokinetic stimulation in the alert mouse.

نویسندگان

  • M Beraneck
  • K E Cullen
چکیده

As a result of the availability of genetic mutant strains and development of noninvasive eye movements recording techniques, the mouse stands as a very interesting model for bridging the gap among behavioral responses, neuronal response dynamics studied in vivo, and cellular mechanisms investigated in vitro. Here we characterized the responses of individual neurons in the mouse vestibular nuclei during vestibular (horizontal whole body rotations) and full field visual stimulation. The majority of neurons ( approximately 2/3) were sensitive to vestibular stimulation but not to eye movements. During the vestibular-ocular reflex (VOR), these neurons discharged in a manner comparable to the "vestibular only" (VO) neurons that have been previously described in primates. The remaining neurons [eye-movement-sensitive (ES) neurons] encoded both head-velocity and eye-position information during the VOR. When vestibular and visual stimulation were applied so that there was sensory conflict, the behavioral gain of the VOR was reduced. In turn, the modulation of sensitivity of VO neurons remained unaffected, whereas that of ES neurons was reduced. ES neurons were also modulated in response to full field visual stimulation that evoked the optokinetic reflex (OKR). Mouse VO neurons, however, unlike their primate counterpart, were not modulated during OKR. Taken together, our results show that the integration of visual and vestibular information in the mouse vestibular nucleus is limited to a subpopulation of neurons which likely supports gaze stabilization for both VOR and OKR.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Developmental expression of tyrosine kinase b in rat vestibular nuclear neurons responding to horizontal and vertical linear accelerations

Brain-derived neurotrophic factor (BDNF) is known to be crucial for the development of peripheral vestibular neurons. However, the maturation profile of the BDNF signal transducing receptor, tyrosine kinase B (TrkB) in functionally activated otolith-related vestibular nuclear neurons of postnatal rats remains unexplored. In the present study, conscious Sprague-Dawley rats (P4 to adult) were sub...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Postnatal expression of EAAC1 and glutamate receptor subunits in vestibular nuclear neurons responsive to vertical linear acceleration

Both glutamate receptors and transporters are known to be important in the postsynaptic regulation of glutamate neurotransmission. However, the maturation profile of glutamate transporter EAAC1 and glutamate receptor subunits (NR1, NR2A and NR2B; and GluR 1-4) in functionally activated saccule-related vestibular nuclear neurons of postnatal rats remains unclear. In the present study, conscious ...

متن کامل

Optokinetic and vestibular responsiveness in the macaque rostral vestibular and fastigial nuclei.

We recorded from rostral vestibular (VN) and rostral fastigial nuclei (FN) neurons that did not respond to eye movements during three-dimensional (3D) vestibular and optokinetic stimulation (OKS). The majority of neurons in both areas (76 and 69% in VN and FN, respectively) responded during both rotational and translational motion. Preferred directions scattered throughout 3D space for translat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 3  شماره 

صفحات  -

تاریخ انتشار 2007